Evaporation-induced buckling and fission of microscale droplet interface bilayers.
نویسندگان
چکیده
Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers (μDIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemispherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a critical bending moment, the buckling bilayer fissions a vesicle to regulate its shape and mass. The μDIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.
منابع مشابه
Dynamic morphologies of microscale droplet interface bilayers.
Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers (μDIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the ...
متن کاملEvaporation induced two-dimensional buckling within liquid droplet
Evaporation induced two-dimensional buckling within liquid droplet" (2009).
متن کاملA genetic algorithm-based approach for numerical solution of droplet status after Coulomb fission using the energy
As a droplet moves, due to evaporation at the surface, the droplet size is gradually reduced. Due to decreasing the size of the droplets moving in the spray core, the surface charges become closer and the repulsive force between the charges increases. When the Coulombic force overcomes the surface tension force (Rayleigh instability) the droplet breaks into smaller droplets (Coulomb fission). T...
متن کاملControl of membrane permeability in air-stable droplet interface bilayers.
Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of ai...
متن کاملStudy of leaky dielectric droplet behavior under an electric field: effect of viscosity and electric conductivity ratios
In this research, hydrodynamic behavior of a leaky dielectric droplet under an electric field is simulated. The level set method is used for interface tracking and the ghost fluid method is used for modeling discontinuous quantities at interface. Using Taylor’s leaky dielectric model, electric field and electric force at the interface is calculated. Simulation results show the droplet deformati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 135 15 شماره
صفحات -
تاریخ انتشار 2013